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Abstract. A complete thermodynamic treatment of the Casimir effect is presented. Explicit expressions for
the free and the internal energy, the entropy and the pressure are discussed. As an example we consider the
Casimir effect with different temperatures between the plates (T ) resp. outside of them (T ′). For T ′ < T
the pressure of heat radiation can eventually compensate the Casimir force and the total pressure can
vanish. We consider both an isothermal and an adiabatic treatment of the interior region. The equilibrium
point (vanishing pressure) turns out instable in the isothermal case. In the adiabatic situation we have both
an instable and a stable equilibrium point, if T ′/T is sufficiently small. Quantitative aspects are briefly
discussed.

PACS. 05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems
(restricted to new topics in section 05) – 11.10.Wx Finite-temperature field theory – 61.16.Ch Scanning
probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic force, etc.

1 Introduction

The Casimir effect [1] is one of the fundamental effects of
Quantum Field Theory. It tests the relevance of the zero
point energy: two parallel, large conducting plates in a
distance a change the vacuum energy of Quantum Elec-
trodynamics in such a way, that a net attractive force
between the plates results. Qualitatively, this situation
does not change, if the system is at finite temperature.
The quantitative corrections for finite temperature [2], fi-
nite conductivity [3] and the necessary changes for related
problems (e.g. for different geometries) [4] are known,
and the Casimir force has been experimentally established
[5–7]. The thermodynamics for the original setup has been
investigated previously [2,8,9]. Here we shall give a some-
what more complete treatment, in which we consider the
region between the plates and outside of them separately.
This allows for a situation, in which the two regions have
different temperatures (outside T ′, inside T ). If we take
T ′ < T , the external pressure is reduced in comparison
with the standard situation (T ′ = T ). Therefore we ex-
pect the existence of a certain distance a0, at which the
Casimir attraction is compensated by the net radiation
pressure. We shall investigate this (mechanical) equilib-
rium point and its stability both for an isothermal and an
adiabatic treatment of the interior region.

2 Thermodynamic functions

In this section we shall collect and discuss briefly formu-
lae for thermodynamic functions for the original Casimir
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setup. A major part of the results has been found
before [8,9] by various methods. In order to make this
paper self-contained, we shall indicate briefly a standard
procedure for the derivation and list the results. In ad-
dition, we shall give numerical details on the functions
involved. We consider two parallel, perfectly conducting
square plates (side L, distance a, L > a), embedded in a
large cube (side L) with one of the plates at face and peri-
odic boundary conditions. We shall consider contributions
from the volume L2a between the plates (suffix int) resp.
L2(L−a) outside of them (suffix ext) separately. In terms
of the partition function Z the free energy of a photon gas
at temperature T reads

F = − 1
β

lnZ =
∑

(G0(k) +Gβ(k)) (1)

with

G0(k) =
~c
2
k, Gβ(k) =

1
β

ln (1− exp (−β~ck)) . (2)

Here β = 1/kBT with Boltzmann’s constant kB and
~ck = ~c

√
k2 is the energy of a photon with wave num-

ber k. The sum extends on all accessible wave numbers
and polarisation states. In order to keep track of ultra-
violet divergences, we shall regularize the contribution at
temperature zero replacing k → k exp (−λk) in G0 and
considering λ→ 0 at the end. We assume L fixed, but so
large, that sums on photon wave numbers can be replaced
by corresponding integrals. Then the contributions to the
free energy per unit area φ = F/L2 read.

φext =
(L− a)π

a3

∫ ∞
0

t2G
(π
a
t
)

dt, (3)
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φint =
π

a2

(
1
2

∫ ∞
0

+
∞∑
n=1

∫ ∞
n

)
tG
(π
a
t
)

dt. (4)

The integrals can be done analytically. In the results to be
listed below we have expanded the result for G0 in pow-
ers of λ and omitted all terms, which vanish for λ → 0.
For Gβ it turned out convenient to use the polylogarithm
Ln(z) =

∑∞
m=1 z

m/mn, which allows even for a calcula-
tion of the indefinite integrals and has simple properties
(cf. Appendix). Further thermodynamic functions can be
calculated from φ by standard formulae. We shall give re-
sults for the entropy

σ = S/kBL
2 = β2 ∂

∂β
φ, (5)

the pressure

P = −
(

dφ
da

)
T

(6)

and the internal energy

ε =
E

L2
=

1
L2

(F + TS) = φ+
1
β
σ. (7)

The results are listed in Table 1 in terms of a finite func-
tion g(v) to be specified below. The variable v is the di-
mensionless quantity (cf. [8–10])

v =
a

π~cβ
=
akB

π~c
T. (8)

The ultraviolet behavior can be discussed without any de-
tails on g. Both contributions to σ are finite. The divergent
contributions to the pressure cancel in the sum Pext +Pint

and in the difference Pext(β′) − Pext(β), which we shall
use in the next section. The total free energy φext + φint

contains a divergent constant ∼ L/λ4, as well as the total
internal energy.

Another formula, which can be read off Table 1 with-
out knowledge of g is the relation

3φ+
1
β
σ − aP + LPext =

12L~c
π2λ4

, (9)

which can be attributed to the fact, that most of the con-
tributions scale as b(v)/a3 with some function b.

The function g(v) contains an infinite sum, which can-
not be performed analytically. Various forms can be found
in the literature [8,9]. We shall prefer a representation,
which allows for a fast and accurate numerical computa-
tion. For this purpose we use the functions (cf. Appendix)

k(x) =
(

1− x d
dx

) ∞∑
n=1

1
n3(exp(nx)− 1)

, h(x) = xk′(x).

(10)
For x > 0 the sum converges rapidly, k is positive and h
is negative. Both functions vanish exponentially for large
argument. Two representations of g in terms of k read

g(v) = −v3

(
1
2
ζ(3) + k(1/v)

)
, (11)

g(v) =
1

720
− π4

45
v4 − v

4π2

(
ζ(3)

2
+ k(4π2v)

)
(12)

with ζ(3) = L3(1) = 1.2020569 . . . The two forms
are related by Poisson’s sum formula [11]. Taken to-
gether, they contain information on the behavior of
thermodynamic functions under temperature inversion
(T → 1/T ) [8,12] (the quantities used in [8] are ξ =
πv, f(ξ) = π6v4/45 + π2g(v)).

In order to discuss the behavior of the thermodynamic
functions quantitatively, we write

φ = φL(T ) +
π2~c
a3

f(v), σ = σL(T ) +
π

a2
s(v),

P =
π2~c
a4

p(v), ε = eL(T ) +
π2~c
a3

e(v), (13)

where (φL, σL, eL) refer to the extensive contributions ∼ L
from the external cube. The remainders are connected by
simple relations. As a consequence of (9) we have

3f(v) + vs(v)− p(v) = 0. (14)

Equation (7) amounts to

e(v) = f(v) + vs(v). (15)

Therefore only two of the four functions (f, s, p, e) are lin-
early independent. Explicit forms in terms of g can be
read off Table 1. Expressions in terms of k(x), h(x) result
by insertion of g. There are two equivalent forms (A, B)
for every function corresponding to (11) resp. (12), which
are listed in Table 2.

The leading terms for small values of v (i.e. at low
temperatures) are found from forms (A) neglecting (k, h).
This approximation can be used for v < 0.09 with er-
rors less than 1%. The asymptotic behaviour at large
values of v (i.e. at high temperatures) is obtained from
forms (B) neglecting (k, h). The corresponding asymp-
totic approximations for (f, s, p) can be used in a rather
large domain. For v = 0.25 the errors are ≤1% and
decrease rapidly with growing v. Form (A) shows, that
the entropy vanishes for T = 0, i.e. Nernst’s law is ful-
filled. For isentropic processes T tends to a finite value
T (a = 0), which is determined by the entropy alone. Form
(B) shows, that the entropy becomes constant in the high-
temperature limit (Kirchhoff’s theorem [10]). It has to be
noted, that there is only a rather narrow domain in v,
in which the infinite sums (k, h) play a role. In this re-
gion the low-temperature behavior of the Casimir force is
gradually changed by temperature effects. This domain is
realistic [6,7]: for T = 18 ◦C we have v ≈ 0.04a (µm).
Using the form (10), one can find numerical values in this
domain rapidly and with high precision. Results are shown
in the plots given in Figure 1 (in which the broken lines
correspond to the asymptotic approximations).

3 Different temperatures and equilibrium

As an application we shall now investigate a situation, in
which the temperature T between the plates may differ
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Table 1.

function ext contribution int contribution

φ (L− a) ~c
h

3
π2λ4 − π6

45 ( va )4
i

~c
h
( 3a
π2λ4 + π2

a3 (− 1
720 + g(v))

i

σ (L− a) 4π5

45

�
v
a

�3 − π
a2 g′(v)

P ~c
h

3
π2λ4 − π6

45
( v
a

)4
i

~c
h
− 3
π2λ4 + π2

a4 (− 1
240

+ 3g(v)− vg′(v))
i

ε (L− a)~c
h

3
π2λ4 + 3π6

45 ( va )4
i

~c
h

3a
π2λ4 + π2

a3

�
− 1

720 + g(v)− vg′(v)
�i

Table 2.

funct. form (A) form (B)

f − 1
720 − v

3
�
ζ(3)

2 −
π4

45 v + k(1/v)
�

− 1
4π2 v

�
ζ(3)

2 + k(4π2v)
�

s v2
�

3ζ(3)
2
− 4π4

45
v + 3k(1/v) − h(1/v)

�
1

4π2

�
ζ(3)

2
+ k(4π2v) + h(4π2v)

�

p − 1
240 − v

3
�
π4

45 v + h(1/v)
�

− 1
4π2 v

�
ζ(3) + 2k(4π2v)− h(4π2v)

�

e − 1
720 + v3

�
ζ(3)− 3π4

45 v + 2k(1/v) − h(1/v)
�

1
4π2 vh(4π2v)
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Fig. 1. Thermodynamic functions.

from the temperature T ′ of the exterior region. We shall
keep T ′ resp. v′ = akBT

′/π~c fixed. For the interior region
we consider two possibilities. In the first case also T resp.
v is kept fixed (isothermal situation). In the second case
we treat the internal region as a closed system, so that the
entropy σint remains constant (adiabatic situation) and T
resp. v vary appropriately with a. In both cases we shall
focus attention on the question, whether there is a dis-
tance a0, at which the total pressure vanishes. If one of
the two plates is movable, the distance a = a0 would con-
stitute mechanical equilibrium between the Casimir at-
traction and the thermal radiation pressure (which repels
the plates). We shall also consider the question, whether
this equilibrium is stable.

For an appropriate treatment we consider the quantity

P (a, v, v′) = Pext(T ′) + Pint(T ) = Pext(T ′)− Pext(T )

+Pext(T ) + Pint(T ) =
π6~c
45a4

G(v, v′) (16)

(the second form shows, that the divergent contributions
are absent, viz. Tab. 1) with

G(v, v′) = v4 +
45
π4
p(v)− v′4 (17)

in terms of p from Section 2. We shall always use the form
(B) from Table 2. The equilibrium condition

P (a, v, v′)|a=a0 = 0 (18)
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amounts to
G(v, v′)|a=a0 = 0. (19)

Solutions are only possible, if v′ < v(a), since p is neg-
ative. A Taylor expansion of P near a = a0 shows, that
dP/da at equilibrium must be negative for a stable sit-
uation. Differentiating (16) and using (19), one observes,
that the stability condition amounts to

dG(v, v′)
da

∣∣∣
a=a0

< 0. (20)

We shall always seek solutions considering a scaled form
of (19)

κ4 = R(v), R(v) =
1
v4

0

(
v4 +

45
π4
p(v)

)
, κ =

v′

v0
(21)

with some scale v0.
In the isothermal case v is proportional to a. If we take

v0 = v, the ratio κ = T ′/T does not depend on a. From the
plot for p(v) given in Figure 1 we can see, that R(v) is a
monotonous function with positive tangent. The function
is positive above a certain value of v. For any given value
of 0 ≤ κ ≤ 1 we have therefore one solution, which is
unstable. Some numerical results are listed in Table 3. The
third row gives the distances for T = 18 ◦C in µm. The
last row is obtained using the asymptotic approximation
pas = −vζ(3)/4π2, which turns out quite accurate.

In the adiabatic case we have to evaluate (21) along an
isentrope, which corresponds to a curve σint(v) = const. A
convenient parametrisation is obtained using the constant

t2 =
2σint

3πζ(3)
(22)

instead of σint. An equation for the isentrope is obtained
inserting the explicit expression for σint(v) = −πg′(v)/a2

from Section 2. In terms of t and s the equation reads

a2t2 =
2

3ζ(3)

(
s(v) +

4π4

45
v3

)
. (23)

The leading term on the r.h.s. for small v is v2 (see Tab. 2,
form (A)). Therefore the isentrope becomes an isotherme
for small v and t can be identified as

t =
kB

π~c
T (a = 0). (24)

In order to obtain an explicit form for the isentrope we
have to solve (23) for v = v(at). This can be done numeri-
cally with high precision. We have used the form (B) from
Table 2 for s(v) to determine v(at). The result is plotted in
the left diagram of Figure 2. An approximate form vas(at)
is obtained neglecting k + h in s(v). The result is

vas(at) =
(
B(12π2a2t2 − 1)

)1/3
, B =

45ζ(3)
32π6

· (25)

v can be approximated by vas for at ≥ 0.25 with an error
≤ 0.1%. With increasing at the error decreases rapidly.

The right diagram of Figure 2 (in which the broken line
corresponds to vas) illustrates this fact.

If we take v0 = at in (21), the ratio κ(0) = T ′/T (a = 0)
does not depend on a and can therefore be used as an input
for (21). The function R(v) shows, however, a different
behavior than in the isothermal case. It vanishes for at =
0.2763, assumes a maximum at at = atM = 0.4391 and
falls off slowly for larger argument (see Fig. 3).

Therefore we obtain no solution, if κ(0) is larger than
κM = (R(atM))1/4 = 0.68542. For κ < κM there are two
solutions: one of them (corresponding to the lower value
of at) is unstable, the other one is stable. The distance
between the two solutions increases with decreasing κ(0).
Some numerical results are listed in Table 4. The entries
for a(18 ◦C) refer to T (0) = 18 ◦C.

It is observed, that κ(a) is close to 1 for the stable equi-
librium points. This is due to the slow falloff ofR(v). Using
the asymptotic approximation p→ −vas(at)ζ(3)/4π2, the
data in Table 4 are reproduced with rather small errors.

The existence of stable equilibrium points implies, that
a movable plate may perform oscillations about these
points. In order to approach the problem of an observa-
tion, we shall discuss briefly some quantitative details. For
these, we have used the formula for the Casimir pressure

π2~c
240a4

= 1.3001× 10−7 N
cm2
· (26)

Here a is measured in microns (µm). We assume the mov-
able plate situated at the distance a1 from a stable equi-
librium point a, where a1/a is small enough, so that a
linear approximation is possible. For the data in Table 4
(stable points, 18 ◦C) we obtain a restoring force/area of

a1

a
(0.39 . . . 28)

pN
cm2
· (27)

The oscillation frequency is

ν =
1√
m

(0.12 . . .6.7)× 10−3 Hz. (28)

Here m is the mass per area of the movable plate mea-
sured in g/cm2. Thus it seems impossible to observe even
one entire oscillation, because the temperature relaxation
takes less time. At higher temperatures the situation is
slightly improved. At 245 ◦C the force is 10 times and the
frequency 4.2 times larger.

4 Conclusions and outlook

In order to discuss thermal effects, we have considered the
standard setup for the Casimir force: two parallel, con-
ducting square plates (side L) in a distance a. The plates
are enclosed in a cube L × L × L with one plate at face.
An ensemble of free photons fufilling boundary conditions
at the plates resp. faces was investigated.

In Section 2 we have used Quantum Statistical Me-
chanics to compute the (free energy, entropy, internal en-
ergy) per area L2 and the pressure. We have calculated
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Fig. 2. Isentrope.

Table 3. Isothermal equilibrium.

κ 0 0.2 0.4 0.6 0.8 0.95

v(a) 0.2419 0.2421 0.24340 0.2532 0.2879 0.4233

a(18 ◦C)/µm 5.981 5.984 6.032 6.260 7.117 10.46

vas(a) 0.2414 0.2415 0.2435 0.2528 0.2877 0.4233

Table 4. Adiabatic equilibrium.

κ(0) 0.2 0.4 0.6 0.65

unstab. at 0.2767 0.2819 0.3148 0.3441

a(18 ◦C)/µm 6.839 6.969 7.783 8.506

κ(a) 0.2285 0.4592 0.7093 0.7876

stab. at 26.03 3.235 0.8917 0.6503

a(18 ◦C)/µm 643.4 79.98 22.05 16.08

κ(a) 0.99998 0.9984 0.9778 0.9565

0.5 1 1.5 2 2.5 3
at

0.05

0.1

0.15

0.2

R

Fig. 3. Adiabatic equilibrium function R.

the contributions from the space between the plates resp.
outside of them separately.

In order to keep track of ultraviolet divergences, a stan-
dard regularisation was used. The divergences are absent
both in the entropy and in the total pressure. They sur-
vive both in the free and internal energy in the extensive
contribution from the external cube (cf. Tab. 1).

Separating all extensive contributions, the remainders
can be written as products of a factor containing some
power of a and a function of a dimensionless variable (8)
(cf. (13)). These four functions are related by two linear
equations, of which one (15) is well-known from thermo-
dynamics. The other one (14) is a consequence of scaling

properties. Both formulae (Tab. 2) and diagrams (Fig. 1)
for the functions are presented. The results allow for accu-
rate quantitative information, also in the (relatively nar-
row) domain between the behavior at low resp. high tem-
peratures.

In Section 3 we have considered a situation with dif-
ferent temperatures between (T ) resp. outside (T ′) of the
plates. For T > T ′ the Casimir pressure is reduced by
thermal effects and at some distance a the total pressure
can vanish, so that the regions inside resp. outside the
plates are in mechanical equilibrium. If both T and T ′

are fixed (isothermal case), this equilibrium has turned
out unstable. If only T ′ is fixed and T is allowed to vary
with a in such a way, that the entropy between the plates
remains constant (adiabatic case), we have found also a
region with stable equilibrium, if T ′/T (a = 0) is small
enough. The frequency of oscillations of one plate about
stable equilibrium distances turned out too low for an ob-
servation (cf. (28)). Whether the (very small) restoring
force (cf. (27)) can be measured, must be left open.

It is known [4], that the Casimir force depends on
the geometry of the setup. Accurate experimental results
[6,7] have so far been obtained only for a setup consisting
of a plate and a sphere. Temperature effects have been
observed, but only the low temperature behavior was in-
volved. An experiment with the original setup (as studied
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here), carried out at larger distances, would test the the-
ory in a different domain.

We would like to thank K. Scharnhorst, G. Barton and P.
Kocevar for discussions. Calculations were carried out using
Mathematica 3.0.

Appendix A

Here we shall give a collection of formulae for the polylog-
arithm L, which we have used in computations. Some of
these are also useful in Quantum Statistical Mechanics of
ideal Bose gasses with other constituents than photons.

Let r, s be integers and 0 ≤ y ≤ 1. The polylogarithm
Lr(y) can be defined by the series

Lr(y) =
∞∑
n=1

yn

nr
(A.1)

and fulfills evidently the relations

Lr(0) = 0, Lr(1) = ζ(r), Lr(y) ≥ 0. (A.2)

By differentiation we obtain

y
d
dy
Lr(y) = Lr−1(y), (A.3)∫

Lr(y)
dy
y

= Lr+1. (A.4)

For r ≤ 1 the function is elementary. We have

L1(y) = − ln(1− y), (A.5)

L0(y) =
y

1− y · (A.6)

Putting y = exp(−z), we obtain from (A.3)(
d
dz

)s
Lr(exp(−z)) = (−1)sLr−s(exp(−z)). (A.7)

From (A.4) we obtain∫
Lr(exp(−z))dz = −Lr+1(exp(−z)). (A.8)

Combining (A.7) and (A.8) and using repeated partial in-
tegration, we obtain∫
zsLr(exp(−z))dz = −s!

s∑
n=0

zs−n

(s− n)!
Lr+n+1(exp(−z)).

(A.9)
With r = 1 this formula can be used for the evaluation of
the integrals on Gβ in (3, 4).

For partition functions we have to put z = nx and to
evaluate infinite sums on n. A useful formula reads

∞∑
n=1

Lr(exp(−nx)) =
∞∑
n=1

1
nr

1
exp(nx)− 1

· (A.10)

The second form is obtained from the first one using the
definition of the polylogarithm and summing the result-
ing geometrical series. It is noted, that the second form
converges exponentially (also for negative r), as long as
x > 0. For an approximate evaluation the series can be
terminated, if x is large enough.

The functions (10) can be obtained starting
from (A.10) with r = 1:

j(x) =
∞∑
n=1

1
n3N

, N = exp(nx)− 1 > 0. (A.11)

Carrying out the derivatives, we obtain

k(x) = (1− x d
dx

)j(x)

=
∞∑
n=1

1
n3

(
1 + nx

N
+
nx

N2

)
> 0, (A.12)

h(x) = −x2
∞∑
n=1

1
n

(
1
N

+
3
N2

+
2
N3

)
< 0. (A.13)

These forms have been used in all numerical calculations.
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